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The Basics:

J Chem Phys vol 91 (1989)

Light yield ~ few 10,000’s of photons 1469 E Morikawa et al
per MeV (dependences on E field, ' K ! ' '
particle type and purity) Xe Kr Ar
Wavelength of emission is 128nm Z
Light with two characteristic time §
constants: §

- fast component, 6 ns

- slow component, 1500 ns
Argon is highly transparent to its . , L, ,
own scintillation light. 6 7 8 g 1 N

PHOTON ENERGY (eV)



Mechanisms of Scintillation in LAr

In liquid argon, there are two important scintillation mechanisms:



Mechanisms of Scintillation in LAr

1: “Self-trapped exciton luminescence”

Atomic Excitation Self-trapping Radiative decay



Mechanisms of Scintillation in LAr

Radiative
decay

Thermalization of Recombination

electrons

lonization

2: “Recombination luminescence”

Recombination step involves an electron cloud around the track core
-> E-Field dependent scintillation yield
-> dE/dx dependent scintillation yield
-> Charge and light anti-correlation



Self-trapped exciton luminescence
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Something to note:
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Both pathways rely on the formatio



Ground state of 2 argon atoms is unbound

O
*e

Excimer states are Rydberg states : Ar2* core with a bound electron




Calculations of the excimer state erergies of
xenon, as a function of nuclear separation |

J. Chem Phys 52, 5170 (1970)
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ENERGY (cm')

A xenon, as a function of nuclear separation

Calculations of the excimer state erlergies of

\ J. Chem Phys 52, 5170 (1970) _
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There are two low lying
excited states:

A singlet state 12u*

A triplet state 32u”*

Singlet and triplet refer to how
the spin of the electron and
argon dimer couple in the
rydberg “atom”.



All scintillation light comes
from excimer decay
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How about the reverse
process (absorption?)
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Impurities in LAr

- Ultra-pure argon is very transparent. Dirty
argon is not.

- All liquid argon will have trace impurities at
some level.

- Some impurities are important for drift, some
for light, some for both.

- Impurities which are difficult / expensive to
remove are those which are

- 1) present in the raw gas
- 2) similar in boiling point to LAr

- 3) not removable by regenerable filtering
techniques

- The composition of impurities depends on _ _
the source of the raw gas. An argon isolation plant



Industrial argon for large neutrino detectors
Large quantity required at low cost
Raw gas : air

Produced by industrial distillation and then
purification with molecular sieves and filters

Contaminants include nitrogen (ppm), oxygen and
water (<ppb)
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Flare filter + sieve system (FNAL)

Underground argon for dark matter detectors
Low radioactivity from 3°Ar required
Raw gas : CO, from underground wells

Produced by VPSA, cryogenic distillation and
filtering

Contaminants include helium, methane, O,, CO,
H,O




Absorption by Nitrogen

Shown at last years LArTPC workshop — absorption due to dissolved nitrogen at

the ppm level:
BJPJ et al, 2013 JINST 8 P07011

Monitor light yield from 2

sources as nitrogen is injected :%;700:— (near source)
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B
Absorption by Methane

New for this year’s meeting — the effects of methane have also been studied in
both visible and UV:

BJPJ et al, 2013 JINST 8 P12015 70
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Absorption is accompanied by no visible
re-emission (reported in gas phase)

<10ppb methane contamination is
required for modern DM experiments.



Self-trapped exciton luminescence
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The production of singlets and triplets is not equally
weighted between the two processes



The fate of the excimer states

1500 ns

The singlet decays into
two argon atoms and a

photon, in 6ns

The triplet decays in ~1500 ns

Some disagreement in the
literature as to whether this
decay proceeds via the singlet,
or directly to the ground state

Either way, time constant much
longer than the singlet.



voltage / V
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Time Constants of LAr Scintillation
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Fig. 4. Typical (single) waveform recorded during the N, test. Event with large energy
deposition from cosmic muon (mip) crossing the LAr cell.



Quenching of Scintillation Light

Scintillation process

*
Competing Excimer
Dissociation Process @@ - / *

Rate dependent on the density of excimers and
density of impurity



B
Quenching by Nitrogen

- First measured by WArP: Quenching shortens long time constant
and reduces total scintillation yield.

In MicroBooNE & LBNE/F, quenching
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B
Quenching by Methane

- We observed quenching by methane, but at concentrations much
above where absorption is problematic

BJPJ et al, 2013 JINST 8 P12015
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D
Excitation Transfer to Xenon

' Pure Ar

Excitation can also be
~ transferred to a dopant
~ which then decays with a
photon.

174 ppm Xe ; SIS Eg xenon : first studied by

: ‘ ICARUS, and more
recently for dark matter
detection (left)

175 nm rather than 128 nm

~ w9%ppmXe

e =T A ~ emission gives a moderate
i ) o improvement to light

‘.i" , S N ~ collection capability

T N L T . (depends on WLS coating)
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From JINST 9 (2014) P06013 Also brings late light to
Wahl et al shorter timescales



Back to pure argon :

6 ns \ .\/
(anan ™

1500 ns




L
An open mystery — the Third Component

- WArP, ArDM, and BoVST, all see some activity in the “intermediate
time” region of a deconvolved PMT pulse for pure argon.

- Interpretation of “intermediate component” not presently clear.
Instrumental effect or scintillation physics?
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- Different measurement methods / experiments do not presently agree on
the value of the intermediate time constant or size of the component.

- A potentially interesting piece of liquid argon microphysics. What
wavelength is it? Dependence on E-field? Purity? dEdx? Other??

- Let’s understand it by this session next year!

10°
i Fast Component 7 = 8 ns (29%)
Intermediate Component = 140 ns (8%)

Slow Component 7= 1.6 us (63%)

D Whittington,
Neutrino2014 poster
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Some new and notable papers about (or relevant to)
LAr scintillation physics since LArTPC2013

- Measurement of Scintillation and lonization Yield and Scintillation
Pulse Shape from Nuclear Recoils in Liquid Argon
arXiv:1406.4825

- Observation of the dependence on drift field of scintillation from
nuclear recoils in liquid argon
Phys.Rev. D88 (2013) 9, 092006

- A study of electron recombination using highly ionizing particles in
the ArgoNeuT Liquid Argon TPC
JINST 8 (2013) P08005

- Performance of liquid argon neutrino detectors with enhanced
sensitivity to scintillation light
arXiv:1405.0848



Summary

| discussed the mechanisms of scintillation in liquid argon

Small concentrations of contaminants can have a
detrimental impact on scintillation light

Methane and nitrogen are problems for underground and
atmospheric argon respectively, and both have been
studied for absorption and quenching effects.

There is mounting evidence of an intermediate time
constant of unknown origin, which can hopefully be
understood soon!



Thank you for your attention.



